Perguntas com a marcação «wilcoxon-signed-rank»

O teste de classificação sinalizada de Wilcoxon é um teste de classificação não paramétrico para comparar duas amostras pareadas, se os valores em uma são maiores do que na outra. Também pode ser usado para comparar uma amostra a um valor fixo. [O teste NÃO deve ser confundido com o `teste de sinal`].

5
Como lidar com dados hierárquicos / aninhados no aprendizado de máquina
Vou explicar meu problema com um exemplo. Suponha que você queira prever a renda de um indivíduo, com alguns atributos: {Idade, Sexo, País, Região, Cidade}. Você tem um conjunto de dados de treinamento como esse train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 




1
Qual é a intuição por trás de amostras intercambiáveis ​​sob a hipótese nula?
Os testes de permutação (também chamados de teste de randomização, teste de re-randomização ou teste exato) são muito úteis e úteis quando a suposição de distribuição normal exigida por, por exemplo, t-testnão é atendida e quando a transformação dos valores pela classificação do teste não-paramétrico como Mann-Whitney-U-testlevaria a mais informações …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

4
Como descobrir se um site de poker online é justo?
Na semana passada, tive uma discussão interessante com um bom amigo meu. Ele estava jogando pôquer online e sugeriu que existe uma relação entre nova assinatura / transferência de dinheiro adicional e as cartas que você recebe, ou seja, você recebe boas cartas para ser fisgado. Os sites provavelmente arriscariam …


1
Caret glmnet vs cv.glmnet
Parece haver muita confusão na comparação entre usar glmnetdentro caretpara procurar uma lambda ideal e usar cv.glmnetpara fazer a mesma tarefa. Muitas perguntas foram feitas, por exemplo: Modelo de classificação train.glmnet vs. cv.glmnet? Qual é a maneira correta de usar glmnet com cursor? Validação cruzada de `glmnet` usando` caret` mas …

3
Por que a eficiência relativa assintótica do teste de Wilcoxon
É sabido que a eficiência relativa assintótica (ARE) do teste de classificação assinado de Wilcoxon é 3π≈0.9553π≈0.955\frac{3}{\pi} \approx 0.955comparado aotestetde Student, se os dados forem obtidos de uma população normalmente distribuída. Isso vale tanto para o teste básico de uma amostra quanto para a variante de duas amostras independentes (o …



1
Em que situação o Wilcoxon Signed-Rank Test seria preferível ao t-Test ou Sign Test?
Após algumas discussões (abaixo), agora tenho uma imagem mais clara de uma pergunta focada, então aqui está uma pergunta revisada, embora alguns dos comentários possam parecer desconectados da pergunta original. Parece que os testes t convergem rapidamente para distribuições simétricas , que o teste de classificação assinada assume simetria e …


1
Por que Anova () e drop1 () forneceram respostas diferentes para os GLMMs?
Eu tenho um GLMM do formulário: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Quando uso drop1(model, test="Chi"), obtenho resultados diferentes dos que utilizo Anova(model, type="III")na embalagem do carro ou summary(model). Estes dois últimos dão as mesmas respostas. Usando um monte de dados fabricados, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

4
Modelo de Histórico de Eventos em Tempo Discreto (Sobrevivência) em R
Estou tentando ajustar um modelo de tempo discreto no R, mas não sei como fazê-lo. Eu li que você pode organizar a variável dependente em linhas diferentes, uma para cada observação no tempo, e usar a glmfunção com um link logit ou cloglog. Neste sentido, tem três colunas: ID, Event(1 …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.