Perguntas com a marcação «gaussian-mixture»

Um tipo de distribuição ou modelo misto que assume subpopulações segue as distribuições gaussianas.



2
Algoritmo EM implementado manualmente
Eu quero implementar o algoritmo EM manualmente e depois compará-lo com os resultados normalmixEMdo mixtoolspacote. Claro, eu ficaria feliz se os dois tivessem os mesmos resultados. A referência principal é Geoffrey McLachlan (2000), Modelos de Mistura Finita . Eu tenho uma densidade de mistura de dois gaussianos, de forma geral, …

2
Por que otimizar uma mistura de gaussiana diretamente computacionalmente difícil?
Considere a probabilidade de log de uma mistura de gaussianos: l(Sn;θ)=∑t=1nlogf(x(t)|θ)=∑t=1nlog{∑i=1kpif(x(t)|μ(i),σ2i)}l(Sn;θ)=∑t=1nlog⁡f(x(t)|θ)=∑t=1nlog⁡{∑i=1kpif(x(t)|μ(i),σi2)}l(S_n; \theta) = \sum^n_{t=1}\log f(x^{(t)}|\theta) = \sum^n_{t=1}\log\left\{\sum^k_{i=1}p_i f(x^{(t)}|\mu^{(i)}, \sigma^2_i)\right\} Fiquei me perguntando por que era computacionalmente difícil maximizar essa equação diretamente? Eu estava procurando por uma clara intuição sólida sobre por que deveria ser óbvio que é difícil ou talvez …



1
Qual é a intuição por trás de amostras intercambiáveis ​​sob a hipótese nula?
Os testes de permutação (também chamados de teste de randomização, teste de re-randomização ou teste exato) são muito úteis e úteis quando a suposição de distribuição normal exigida por, por exemplo, t-testnão é atendida e quando a transformação dos valores pela classificação do teste não-paramétrico como Mann-Whitney-U-testlevaria a mais informações …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

5
Questões de singularidade no modelo de mistura gaussiano
No capítulo 9 do livro Reconhecimento de padrões e aprendizado de máquina, há uma parte sobre o modelo de mistura gaussiano: Para ser sincero, não entendo por que isso criaria uma singularidade. Alguém pode me explicar isso? Sinto muito, mas sou apenas um graduado e um novato em aprendizado de …

3
Referências que justificam o uso de misturas gaussianas
Os modelos de mistura gaussiana (GMMs) são atraentes porque são simples de trabalhar tanto analiticamente quanto na prática e são capazes de modelar algumas distribuições exóticas sem muita complexidade. Há algumas propriedades analíticas que devemos esperar manter que não são claras em geral. Em particular: Diga SnSnS_n é a classe …





1
R / mgcv: Por que os produtos tensores te () e ti () produzem superfícies diferentes?
O mgcvpacote para Rpossui duas funções para ajustar as interações do produto tensorial: te()e ti(). Entendo a divisão básica do trabalho entre os dois (ajustando uma interação não linear versus decompondo essa interação em efeitos principais e uma interação). O que não entendo é o porquê te(x1, x2)e ti(x1) + …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.