Perguntas com a marcação «chi-squared»

Um teste (normalmente de distribuição, independência ou qualidade do ajuste) ou uma família de distribuições relacionadas a esse teste.


1
R / mgcv: Por que os produtos tensores te () e ti () produzem superfícies diferentes?
O mgcvpacote para Rpossui duas funções para ajustar as interações do produto tensorial: te()e ti(). Entendo a divisão básica do trabalho entre os dois (ajustando uma interação não linear versus decompondo essa interação em efeitos principais e uma interação). O que não entendo é o porquê te(x1, x2)e ti(x1) + …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 




2
Expectativa de
Seja X1X1X_1 , X2X2X_2 , ⋯⋯\cdots , Xd∼N(0,1)Xd∼N(0,1)X_d \sim \mathcal{N}(0, 1) e seja independente. Qual é a expectativa de X41(X21+⋯+X2d)2X14(X12+⋯+Xd2)2\frac{X_1^4}{(X_1^2 + \cdots + X_d^2)^2} ? É fácil encontrar E(X21X21+⋯+X2d)=1dE(X12X12+⋯+Xd2)=1d\mathbb{E}\left(\frac{X_1^2}{X_1^2 + \cdots + X_d^2}\right) = \frac{1}{d} por simetria. Mas eu não sei como encontrar a expectativa deX41(X21+⋯+X2d)2X14(X12+⋯+Xd2)2\frac{X_1^4}{(X_1^2 + \cdots + X_d^2)^2} …

1
Teste Qui-quadrado de duas amostras
Esta pergunta é do livro de Van der Vaart Asymptotic Statistics, pág. 253. # 3: Suponha que e sejam vetores multinomiais independentes com parâmetros e . Sob a hipótese nula de que mostra queXmXm\mathbf{X}_mYnYn\mathbf{Y}_n(m,a1,…,ak)(m,a1,…,ak)(m,a_1,\ldots,a_k)(n,b1,…,bk)(n,b1,…,bk)(n,b_1,\ldots,b_k)ai=biai=bia_i=b_i ∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i\sum_{i=1}^k \dfrac{(X_{m,i} - m\hat{c}_i)^2}{m\hat{c}_i} + \sum_{i=1}^k \dfrac{(Y_{n,i} - n\hat{c}_i)^2}{n\hat{c}_i} possui . onde .c i = ( …



2
Como a estatística qui-quadrado do Pearson se aproxima de uma distribuição qui-quadrado
Portanto, se a estatística qui-quadrado de Pearson for fornecida para uma tabela , sua forma será:1×N1 1×N1 \times N ∑i=1n(Oi−Ei)2Ei∑Eu=1 1n(OEu-EEu)2EEu\sum_{i=1}^n\frac{(O_i - E_i)^2}{E_i} Então isso se aproxima de , a distribuição qui-quadrado com graus de liberdade, à medida que o tamanho da amostra aumenta. n - 1 Nχ2n−1χn-1 12\chi_{n-1}^2n−1n-1 1n-1NNN …

1
Por que Anova () e drop1 () forneceram respostas diferentes para os GLMMs?
Eu tenho um GLMM do formulário: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Quando uso drop1(model, test="Chi"), obtenho resultados diferentes dos que utilizo Anova(model, type="III")na embalagem do carro ou summary(model). Estes dois últimos dão as mesmas respostas. Usando um monte de dados fabricados, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

2
Intervalo de confiança para o qui-quadrado
Estou tentando encontrar uma solução para comparar dois testes de "qui-quadrado de qualidade de ajuste". Mais precisamente, quero comparar os resultados de duas experiências independentes. Nesses experimentos, os autores usaram o qui-quadrado de qualidade de ajuste para comparar estimativas aleatórias (frequências esperadas) com frequências observadas. Os dois experimentos tiveram o …


4
Como provar estatisticamente se uma coluna possui dados categóricos ou não está usando Python
Eu tenho um quadro de dados em python, onde eu preciso encontrar todas as variáveis ​​categóricas. A verificação do tipo da coluna nem sempre funciona porque o inttipo também pode ser categórico. Portanto, busco ajuda para encontrar o método de teste de hipótese correto para identificar se uma coluna é …


Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.