Perguntas com a marcação «covariance»

A covariância é uma quantidade usada para medir a força e a direção do relacionamento linear entre duas variáveis. A covariância é sem escala e, portanto, muitas vezes difícil de interpretar; quando escalado pelos DPs das variáveis, torna-se o coeficiente de correlação de Pearson.



1
Por que Anova () e drop1 () forneceram respostas diferentes para os GLMMs?
Eu tenho um GLMM do formulário: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Quando uso drop1(model, test="Chi"), obtenho resultados diferentes dos que utilizo Anova(model, type="III")na embalagem do carro ou summary(model). Estes dois últimos dão as mesmas respostas. Usando um monte de dados fabricados, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
Teste de hipóteses na matriz de covariância inversa
Suponha que eu observe iid e desejo testar vech para um matriz conformável e vetor . Existe trabalho conhecido sobre esse problema?xi∼N(μ,Σ)xi∼N(μ,Σ)x_i \sim \mathcal{N}\left(\mu,\Sigma\right)H0:A H0:A H_0: A\ (Σ−1)=a(Σ−1)=a\left(\Sigma^{-1}\right) = aAAAaaa A tentativa óbvia (para mim) seria através de um teste de razão de probabilidade, mas parece que maximizar a probabilidade …


1
O que é a matriz de covariância assintótica?
É verdade que a matriz de covariância assintótica é igual à matriz de covariância das estimativas de parâmetros? se não, o que é? E qual é a diferença entre a matriz de covariância e a matriz de covariância assintótica nesse caso? Desde já, obrigado!

1
Variável categórica de regressão linear R valor "oculto"
Este é apenas um exemplo que encontrei várias vezes, portanto não tenho dados de amostra. Executando um modelo de regressão linear em R: a.lm = lm(Y ~ x1 + x2) x1é uma variável contínua. x2é categórico e possui três valores, por exemplo, "Baixo", "Médio" e "Alto". No entanto, a saída …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 



1
Qual modelo de aprendizagem profunda pode classificar categorias que não são mutuamente exclusivas
Exemplos: Eu tenho uma frase na descrição do trabalho: "Java senior engineer in UK". Eu quero usar um modelo de aprendizado profundo para prever em duas categorias: English e IT jobs. Se eu usar o modelo de classificação tradicional, ele poderá prever apenas 1 rótulo com softmaxfunção na última camada. …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Como comparar eventos observados x eventos esperados?
Suponha que eu tenha uma amostra de frequências de 4 eventos possíveis: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 e tenho as probabilidades esperadas de meus eventos ocorrerem: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Com a soma das frequências …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

1
Os determinantes das matrizes de covariância e correlação e / ou seus invasores têm interpretações úteis?
Enquanto aprendia a calcular matrizes de covariância e correlação e seus inversos em VB e T-SQL há alguns anos, aprendi que as várias entradas têm propriedades interessantes que podem torná-las úteis nos cenários certos de mineração de dados. Um exemplo óbvio é a presença de variações nas diagonais das matrizes …

2
Interpretação da Lei Total de Covariância
sejam variáveis ​​aleatórias definidas no mesmo espaço de probabilidade e covariância de e seja finita, então a lei da fórmula total de decomposição de covariância / covariância declara: Qual é a interpretação de e ?X, Y, ZX,Y,ZX,Y,ZXXXYYYCov(X,Y)=E[Cov(X,Y|Z)](i)+Cov[E(X|Z),E(Y|Z)](ii)Cov(X,Y)=E[Cov(X,Y|Z)]⏟(i)+Cov[E(X|Z),E(Y|Z)]⏟(ii)\begin{align} \text{Cov}(X,Y)=\underbrace{\mathbb{E}\big[\text{Cov}(X,Y\lvert Z)\big]}_{\text{(i)}}+\underbrace{\text{Cov}\big[\mathbb{E}(X\lvert Z),\mathbb{E}(Y\lvert Z)\big]}_{\text{(ii)}} \end{align}(i)(i)\text{(i)}(ii)(ii)\text{(ii)} Penso: em (ii) as duas expectativas condicionais podem …



Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.