Perguntas com a marcação «modeling»

Essa tag descreve o processo de criação de um modelo estatístico ou de aprendizado de máquina. Sempre adicione uma tag mais específica.

1
Pacote GBM vs. Caret usando GBM
Estive usando o ajuste de modelo caret, mas depois executei novamente o modelo usando o gbmpacote. Entendo que o caretpacote usa gbme a saída deve ser a mesma. No entanto, apenas um teste rápido usando data(iris)mostra uma discrepância no modelo de cerca de 5% usando RMSE e R ^ 2 …

5
Como executar a imputação de valores em um número muito grande de pontos de dados?
Eu tenho um conjunto de dados muito grande e faltam cerca de 5% de valores aleatórios. Essas variáveis ​​estão correlacionadas entre si. O exemplo a seguir do conjunto de dados R é apenas um exemplo de brinquedo com dados correlatos simulados. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 


1
Critérios para selecionar o melhor modelo em um Modelo Markov Oculto
Eu tenho um conjunto de dados de séries temporais no qual estou tentando ajustar um Modelo de Markov oculto (HMM) para estimar o número de estados latentes nos dados. Meu pseudo-código para fazer isso é o seguinte: for( i in 2 : max_number_of_states ){ ... calculate HMM with i states …

1



1

1
ajuste de uma função exponencial usando mínimos quadrados vs. modelo linear generalizado vs. mínimos quadrados não lineares
Eu tenho um conjunto de dados que representa decaimento exponencial. Eu gostaria de ajustar uma função exponencial a esses dados. Eu tentei log transformando a variável de resposta e, em seguida, usando menos quadrados para ajustar uma linha; usando um modelo linear generalizado com uma função de link de log …

4
Modelos lineares de log
Alguém pode explicar por que usamos Modelos Lineares de Log em termos muito leigos? Eu venho de formação em engenharia, e isso realmente está se tornando um assunto difícil para mim, estatísticas que são. Serei grato por uma resposta.



10
Razões além da previsão para construir modelos?
Joshua Epstein escreveu um artigo intitulado "Why Model?" disponível em http://www.santafe.edu/media/workingpapers/08-09-040.pdf, no qual são apresentadas 16 razões: Explique (muito diferente de prever) Guia de coleta de dados Ilumine a dinâmica do núcleo Sugerir analogias dinâmicas Descubra novas perguntas Promover um hábito científico da mente Resultados limitados (colchetes) a intervalos plausíveis …
11 modeling 

1
R / mgcv: Por que os produtos tensores te () e ti () produzem superfícies diferentes?
O mgcvpacote para Rpossui duas funções para ajustar as interações do produto tensorial: te()e ti(). Entendo a divisão básica do trabalho entre os dois (ajustando uma interação não linear versus decompondo essa interação em efeitos principais e uma interação). O que não entendo é o porquê te(x1, x2)e ti(x1) + …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

7
Evitando a discriminação social na construção de modelos
Tenho perguntas inspiradas no recente escândalo de recrutamento na Amazônia, onde foram acusadas de discriminação contra mulheres em seu processo de recrutamento. Mais informações aqui : Os especialistas em aprendizado de máquina da Amazon.com descobriram um grande problema: seu novo mecanismo de recrutamento não gostava de mulheres. A equipe tinha …

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.